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Abstract—For a non-empty ground set 𝑋, finite or infinite, the set-valuation or set-labeling of a given graph 𝐺 is an injective function 𝑓:𝑉(𝐺) →
𝒫(𝑋), with induced edge-function 𝑓∗: 𝐸(𝐺) → 𝒫(𝑋) is defined by 𝑓+(𝑢𝑢) = 𝑓(𝑢) ∗ 𝑓(𝑢);𝑢𝑢 ∈ 𝐸(𝐺), where 𝒫(𝑋) is the power set of 𝑋 and ∗ is a pre-
defined binary operation on sets. A set-labeling 𝑓 of a graph 𝐺 is called a set-indexer if the induced function 𝑓∗ is also injective. An integer additive 
set-labeling is defined as an injective function 𝑓: 𝑉(𝐺) → 𝒫(ℕ0) such that the induced function 𝑓+:𝐸(𝐺) → 𝒫(ℕ0) defined by 𝑓+(𝑢𝑢) = 𝑓(𝑢) + 𝑓(𝑢) 
is also injective, where ℕ0 is the set of all non-negative integers, 𝒫(ℕ0) its power set 𝑓(𝑢) + 𝑓(𝑢) isthe sumset of the set-labels 𝑓(𝑢) and 𝑓(𝑢) of 
the vertices 𝑢 and 𝑢 in 𝐺. In this paper, we critically and creatively review the concepts and properties of integer additive set-valued graphs.   

 
Index Terms— Set-labeling, set-indexer, integer additive set-labeling, integer additive set-indexer.  
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1 INTRODUCTION                                                                      
OR all terms and definitions, not defined specifically in 
this paper, we refer to [23]. Unless mentioned otherwise, 
all graphs considered here are simple, finite and have no 

isolated vertices. 
 

The researches on graph labeling problems commenced with 
the introduction of the concept of number valuations of 
graphs in [29]. Since then, the studies on graph labeling have 
contributed significantly to the researches in graph theory and 
associated fields. Graph labeling problems have numerous 
theoretical and practical applications. Many types of graph 
labelings are surveyed and listed in [16].  
 

Motivated from certain problems related to social interactions 
and social networks, Acharya introduced, in [1], the notion of 
set-valuation of graphs analogous to the number valuations of 
graphs. For a non-empty ground set 𝑋, finite or infinite,the set-
valuation or set-labeling of a given graph 𝐺 is an injective 
function 𝑓:𝑉(𝐺) → 𝒫(𝑋), where 𝒫(𝑋) is the power set of the 
set 𝑋.  
 

Also, in [1], a set-indexer of a graph 𝐺 is defined as an injective 
set-valued function 𝑓:𝑉(𝐺) → 𝒫(𝑋) such that the function 
𝑓∗:𝐸(𝐺) → 𝒫(𝑋)− {∅} defined by 𝑓∗(𝑢𝑢) = 𝑓(𝑢) ∗ 𝑓(𝑢) for 
every 𝑢𝑢 ∈ 𝐸(𝐺) is also injective, where 𝒫(𝑋) is the set of all 
subsets of 𝑋 and ∗ is a binary operation on sets.  
 

Taking the symmetric difference of two sets as the operation 
between two set-labels of the vertices of 𝐺, the following theo-
rem was proved in [1].  
 
Theorem 1.1.  [1] Every graph has a set-indexer.  

2. ON INTEGER ADDITIVE SET-LABELED GRAPHS 
Let 𝐴 and 𝐵 be two non-empty sets. The sumset of 𝐴 and 𝐵 is 
denoted by 𝐴 + 𝐵 and is defined as 𝐴 + 𝐵 = {𝑎 + 𝑏:𝑎 ∈ 𝐴,𝑏 ∈
𝐵}. If a set 𝐶 is the sumset of two sets 𝐴 and 𝐵, then 𝐴 and 𝐵 
are said to be the summands of 𝐶. Note that for any set 𝐴, we 
can write 𝐴 = 𝐴 + {0}. Here, 𝐴 and {0} are said to be the non-
trivial summands of the set 𝐴. The sumsets and summands are 
non-trivial unless mentioned otherwise.  

 

For any positive integer 𝑛, an 𝑛-integral multiple of a set 𝐴, de-
noted by 𝑛.𝐴 and is defined as 𝑛.𝐴 = {𝑛𝑎:𝑎 ∈ 𝐴}. We denote 
the cardinality of a set 𝐴 by |𝐴|. Hence, 2𝐴 = 𝐴 + 𝐴 and 
2.𝐴 = {2𝑎:𝑎 ∈ 𝐴} and |2𝐴| > |𝐴| where as |2.𝐴| = |𝐴|.  

 

In this work, we review the studies on the graphs which admit 
a particular type of set-labeling called integer additive set-
labeling, defined in terms of the sumsets of given sets of non-
negative integers. 

  
The notion of integer additive set-labeling of a graph was in-
troduced as follows, using the concept of sumsets of two sets 
of non-negative integers, as follows. 

  
Definition 2.1.  Let ℕ0 be the set of all non-negative integers 
and let 𝒫(ℕ0) be its power set. A function 𝑓:𝑉(𝐺) → 𝒫(ℕ0), 
whose associated function 𝑓+(𝑢𝑢):𝐸(𝐺) → 𝒫(ℕ0) is defined by 
𝑓+(𝑢𝑢) = 𝑓(𝑢) + 𝑓(𝑢), is said to be an integer additive set-
labeling if it is injective. A graph 𝐺 which admits an integer 
additive set-labeling is called an integer additive set-labeled graph 
or integer additive set-valued graph.  
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The notion of integer additive set-indexers of graphs was first 
appeared in [17] as follows.  
 

Definition 2.2. An integer additive set-indexer (IASI) of a graph 
𝐺 is defined as an injective function 𝑓:𝑉(𝐺) → 𝒫(ℕ0) such that 
the induced function 𝑓+:𝐸(𝐺) → 𝒫(ℕ0) defined by 𝑓+(𝑢𝑢) =
𝑓(𝑢) + 𝑓(𝑢) = {𝑎 + 𝑏:𝑎 ∈ 𝑓(𝑢),𝑏 ∈ 𝑓(𝑢)} is also injective. A 
graph 𝐺 which admits an IASI is called an integer additive set-
indexed graph.  
 
In this discussion, we denote the associated function of an 
IASL 𝑓, defined over the edge set of 𝐺 by 𝑓+.  
 

Definition 2.3. An IASL (or IASI) is said to be 𝑘-uniform if 
|𝑓+(𝑒)| = 𝑘 for all 𝑒 ∈ 𝐸(𝐺). That is, a connected graph 𝐺 is 
said to have a 𝑘-uniform IASL if all of its edges have the same 
set-indexing number 𝑘.  
 

If either 𝑓(𝑢) or 𝑓(𝑢) is countably infinite, then their sumset 
will also be countably infinite and hence the study of the car-
dinality of the sumset 𝑓(𝑢) + 𝑓(𝑢) becomes countably infinite. 
Hence, we restrict our discussion to finite sets of non-negative 
integers.  
 

Certain studies about integer additive set-indexed graphs 
have been done in [5], [18], [32] and [31]. The following are the 
important terms and definitions made in these papers.  
 
The cardinality of the set-label of an element (vertex or edge) 
of a graph 𝐺 is called the set-indexing number of that element. If 
the set-labels of all vertices of 𝐺 have the same cardinality, 
then the vertex set 𝑉(𝐺) is said to be uniformly set-indexed. A 
graph is said to admit (𝑘, 𝑙)-completely uniform IASI (or IASL) 𝑓 
if 𝑓 is a 𝑘-uniform IASL (or IASI) and 𝑉(𝐺) is 𝑙-uniformly set-
indexed.  
 
Analogous to Theorem 1, we have proved the following theo-
rem.  
 
Theorem 2.4.  Every graph has an integer additive set-labeling.  
 
The proof follows from the fact that the sumset of two sets of 
non-negative integers is again a set of non-negative integers.  
 
The following theorem was proved in [31] by choosing the set-
labels of the vertices of a given graph 𝐺 in a suitable manner.  
 
Theorem 2.5.  [31] Every graph has an integer additive set-indexer.  
 

3. IASL OF CERTAIN GRAPH OPERATIONS 
 
The sumsets of different pairs of sets non-negative integers 
need not be distinct in all cases. But we can establish the exist-
ence of an IASI for any given graph 𝐺 if we choose the set-
labels of the vertices of 𝐺 suitably in such a way that no two 
edges of 𝐺 have the same set-indexing number.  

 
We know that if 𝐴 and 𝐵 are two sets of non-negative integers, 
then their sumset 𝐴 + 𝐵 is also a set of non-negative integers. 
That is, if 𝐴,𝐵 ⊂ ℕ0, then 𝐴 + 𝐵 ⊂ ℕ0. This property leads us to 
the following results on certain operations andproducts of 
IASL graphs.  
First, we consider the union of two IASL graphs.  
 
Theorem 3.1.  The union of two IASL (or IASI) graphs also admits 
(induced) IASL (or IASI).  
 
Proof. Let 𝐺1 and 𝐺2 be two graphs that admit the IASLs 𝑓1 
and 𝑓2 respectively, chosen in such a way that 𝑓1 and 𝑓2 are the 
same for the common vertices of 𝐺1 and 𝐺2, if any. Then, de-
fine a function 𝑓 on 𝐺1 ∪ 𝐺2, such that 𝑓 = 𝑓1 for all vertices in 
𝐺1 and 𝑓 = 𝑓2 for all vertices in 𝐺2 such that the associated 
function 𝑓+ of 𝑓 is defined as 𝑓+(𝑢𝑢) = 𝑓1(𝑢) + 𝑓1(𝑢) if 
𝑢𝑢 ∈ 𝐸(𝐺1) and 𝑓+(𝑢𝑢) = 𝑓2(𝑢) + 𝑓2(𝑢) if 𝑢𝑢 ∈ 𝐸(𝐺2). Clearly, 
𝑓 is an IASL of 𝐺1 ∪ 𝐺2.        
 
Next, in the following theorem, we check whether the join of 
two IASL graphs is an IASL graph.  
 
Theorem 3.2. The join of two IASL (or IASI) graphs also admits 
(induced) IASL (or IASI).  
 
Proof. Let 𝐺1 and 𝐺2 be two graphs that admit the IASLs 𝑓1 
and 𝑓2 respectively. Consider the join 𝐺 = 𝐺1 + 𝐺2. Define a 
function 𝑓 on 𝐺 in such a way that 𝑓 = 𝑓1 for all vertices in 𝐺1 
and 𝑓 = 𝑓2 for all vertices in 𝐺2 and the associated function 
𝑓+:𝐸(𝐺) → 𝒫(ℕ0) of 𝑓 is defined as as 𝑓+(𝑢𝑢) = 𝑓1(𝑢) + 𝑓1(𝑢) 
if 𝑢𝑢 ∈ 𝐸(𝐺1) and 𝑓+(𝑢𝑢) = 𝑓2(𝑢) + 𝑓2(𝑢) if 𝑢𝑢 ∈ 𝐸(𝐺2). Clear-
ly, 𝑓 is an IASL of 𝐺1 ∪ 𝐺2.  .      
   
 
The following theorem is on the admissibility of an IASL by 
the complement of an IASL-graph.  
 
Theorem 3.3. The complement of an IASL graph is also an IASL 
graph.  
 
Proof. The proof follows from the fact that a graph 𝐺 and its 
complement 𝐺 have the same set of vertices and hence have 
the same set of set-labels. That is, an IASL 𝑓 defined on a 
graph 𝐺 is an IASL of the complement of 𝐺 also.    
  
 
Now, recall the definitions of the certain fundamental prod-
ucts of two graphs given in [22].  
 
Let 𝐺1(𝑉1,𝐸1) and 𝐺2(𝑉2,𝐸2) be two graphs. Then, the Cartesian 
product of 𝐺1 and 𝐺2, denoted by 𝐺1□ 𝐺2, is the graph with ver-
tex set 𝑉1 × 𝑉2 defined as follows. Let 𝑢 = (𝑢1,𝑢2) and 𝑢 =
(𝑢1,𝑢2) be two points in 𝑉1 × 𝑉2. Then, 𝑢 and 𝑢 are adjacent in 
𝐺1□𝐺2 whenever [𝑢1 = 𝑢1 and 𝑢2 is adjacent to 𝑢2] or [𝑢2 = 𝑢2 
and 𝑢1 is adjacent to 𝑢1].  
 
The direct product of two graphs 𝐺1 and 𝐺2, is the graph whose 
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vertex set is 𝑉(𝐺1) × 𝑉(𝐺2) and for which the vertices (𝑢,𝑢) 
and (𝑢′,𝑢′) are adjacent if 𝑢𝑢′ ∈ 𝐸(𝐺1) and 𝑢𝑢′ ∈ 𝐸(𝐺2). The 
direct product of 𝐺1 and 𝐺2 is denoted by 𝐺1 × 𝐺2. 
  
The strong product of two graphs 𝐺1 and 𝐺2 is the graph, de-
noted by 𝐺1 ⊠ 𝐺2, whose vertex set is 𝑉(𝐺1) × 𝑉(𝐺2) and for 
which the vertices (𝑢,𝑢) and (𝑢′,𝑢′) are adjacent if [𝑢𝑢′ ∈
𝐸(𝐺1) and 𝑢 = 𝑢′] or [𝑢 = 𝑢′ and 𝑢𝑢′ ∈ 𝐸(𝐺2)] or [𝑢𝑢′ ∈ 𝐸(𝐺1) 
and 𝑢𝑢′ ∈ 𝐸(𝐺2)].  
 
The lexicographic product or composition (see [24]) of two graphs 
𝐺1 and 𝐺2 is the graph, denoted by 𝐺1 ∘ 𝐺2, is the graph whose 
vertex set 𝑉(𝐺1) × 𝑉(𝐺2) and for two vertices (𝑢, 𝑢) and (𝑢′,𝑢′) 
are adjacent if [𝑢𝑢′ ∈ 𝐸(𝐺1)] or [𝑢 = 𝑢′ and 𝑢𝑢′ ∈ 𝐸(𝐺2)].  
 
Now we proceed to verify whether these products of two 
IASL graphs admit IASLs.  
 
Theorem 3.4. The Cartesian product of two IASL graphs also ad-
mits an IASL.  
 
Proof. Let 𝑢1,𝑢2, … ,𝑢𝑚 be the vertices of 𝐺1 and 𝑢1,𝑢2, … , 𝑢𝑛 be 
the vertices of 𝐺2. Also let 𝑓1, 𝑓2 be the IASLs defined on 𝐺1 
and 𝐺2 respectively. Now, define a function 𝑓 on 𝐺1□𝐺2 such 
that 𝑓(𝑢𝑖 ,𝑢𝑗) = 𝑓1(𝑢1) + 𝑓2(𝑢𝑗) where the associated function 
𝑓+: (𝐸(𝐺1□𝐺2)) → 𝒫(ℕ0) is defined by 𝑓+((𝑢𝑖 ,𝑢𝑗), (𝑢𝑟 ,𝑢𝑠)) =
𝑓(𝑢𝑖 ,𝑢𝑗) + 𝑓(𝑢𝑟 ,𝑢𝑠).  Therefore, 𝑓 is an IASL on 𝐺1□𝐺2.     
 
Using the definition of 𝑓 for the vertices and the associated 
function 𝑓+ for the edges, we can establish the existence of 
IASLs for the other fundamental graph products also as stated 
in the following results.  
 
Theorem 3.5.  The direct product of two IASL graphs also admits 
an IASL. 
  
Theorem 3.6. The strong product of two IASL graphs also admits 
an IASL.  
 
Theorem 3.7.  The lexicographic product of two IASL graphs is also 
an IASL graph.  
 
Next, we consider certain products of graphs in which we take 
finite number copies of any one of the two graphs and attach 
these copies to the vertices of the other graph using certain 
rules.  
 
The most popular one among such graph products, is the co-
rona of two graphs which is defined in [15] as follows.  
 
The corona of two graphs 𝐺1 and 𝐺2, denoted by 𝐺1 ⊙𝐺2, is the 
graph obtained by taking |𝑉(𝐺1)| copies of 𝐺2 and then joining 
the 𝑖-th point of 𝐺1 to every point of the 𝑖-th copy of 𝐺2. 
  
Another commonly used graph product in various literature, 
is the rooted product of two graphs, which is defined in [19] as 
follows.  
 

The rooted product of a graph 𝐺1 on 𝑛1 vertices and rooted 
graph 𝐺2 on 𝑛2 vertices, denoted by 𝐺1 ∘ 𝐺2, is defined as the 
graph obtained by taking 𝑛1 copies of 𝐺2, and for every vertex 
𝑢𝑖 of 𝐺1 and identifying 𝑢𝑖 with the root node of the 𝑖-th copy 
of 𝐺2.  
 
The admissibility of an IASL by these products of two IASL 
graphs is established in the following theorem.  
 
Theorem 3.8. The corona of two IASL graphs also admits an IASL.  
 
Proof. Let 𝑢1,𝑢2, … ,𝑢𝑚 be the vertices of 𝐺1 and let 𝑢1,𝑢2, … , 𝑢𝑛 
be the vertices of 𝐺2. For 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗 ≤ 𝑛, let 𝑢𝑖𝑗 be the 
𝑗-th vertex of the 𝑖-th copy of 𝐺2. Now, label the vertex 𝑢𝑖𝑗 of 𝑖-
th copy𝐺2 corresponding to vertex 𝑢𝑗 of 𝐺2 by the set 𝑓𝑖(𝑢𝑖𝑗) =
𝑖. 𝑓(𝑢𝑗). Let the set-label of an edge in 𝐺 be the sumset of the 
set-labels of its end vertices. Clearly, this labeling is an IASL 
on 𝐺1 ⊙𝐺2.         
 
Theorem 3.9. The rooted product of two IASL graphs is also an 
IASL graph.  
 
Proof. In the rooted product 𝐺1 ∘ 𝐺2, for 1 ≤ 𝑖 ≤ |𝑉(𝐺1)|, the 
roots of the 𝑖-th copy of 𝐺2 is identified with the 𝑖-th vertex of 
𝐺1. Label these identified vertices by the corresponding set-
labels of 𝐺1. All other vertices in the different copies of 𝐺2 by 
distinct integral multiples of the set-labels of corresponding 
vertices of 𝐺2. Also, let the set-labels of edges in 𝐺1 ∘ 𝐺2 be the 
sumset of the set-labels of their end vertices. Clearly, this set-
labeling is an IASL on 𝐺1 ∘ 𝐺2.      
  
 
4. IASL of Certain Associated Graphs 
 
An IASL of a graph 𝐺 induces an IASL to certain other graphs 
associated to 𝐺. The induction property of a IASL of a graph 𝐺 
to various associated graphs of 𝐺 is studied in [31]. The major 
concepts and findings in this paper are mentioned in this sec-
tion. More over, we establish some new results in this area. 
  
An obvious result about an IASI 𝑓 of a given graph 𝐺 is its 
hereditary nature. The following theorem shows that an IASI 
of a given graph induces an IASI on any subgraph of 𝐺.  
 
Proposition 4.1.  [31] If a given graph 𝐺 admits an IASL (or IASI) 
𝑓, then any subgraph 𝐻 of 𝐺 also admits an IASI 𝑓∗, the restriction 
of 𝑓 to 𝑉(𝐻). That is, the existence of an IASL for a graph 𝐺 is a 
hereditary property. 
  
If we replace an element (a vertex or an edge) of 𝐺 by another 
element (a vertex or an edge) which is not in 𝐺 to form an as-
sociated graph structure, say 𝐺′, it is customary that the com-
mon elements of the graph 𝐺 and the associated graph 𝐺′ pre-
serve the same set-labels and the newly introduced elements 
assume the same set-label of the corresponding deleted ele-
ments of 𝐺. That is, the IASI defined on 𝐺 induces an IASI for 
the graph 𝐺′. The IASI, thus defined for the newly formed 
graph 𝐺′is called an induced IASI of 𝐺′.  
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This induction property of integer additive set-labeling holds 
not only for the subgraphs of an IASI graph 𝐺, but also for 
certain other graph structures associated with 𝐺 such as mi-
nors, topological reductions etc.  
 
In the following results, we consider only the IASL of the as-
sociated graph which are induced from the IASL of the graph 
𝐺 concerned.  
 
By an edge contraction in 𝐺, we mean an edge, say 𝑒, is re-
moved and its two incident vertices, 𝑢 and 𝑢, are merged into 
a new vertex 𝑤, where the edges incident to 𝑤 each corre-
spond to an edge incident to either 𝑢 or 𝑢. 
  
The existence of an IASI for the graph obtained by contracting 
finite edges of an IASL graph 𝐺 is established in the following 
theorem.  
 
Proposition 4.2.  [31] Let 𝐺 be an IASI graph and let 𝑒 be an edge 
of 𝐺. Then, 𝐺 ∘ 𝑒 admits an IASI.  
 
An undirected graph 𝐻 is called a minor of a given graph 𝐺 if 
𝐻 can be formed from 𝐺 by deleting edges and vertices and by 
contracting edges.  
 
Proposition 4.3. Let 𝐺 be an IASI graph and let 𝐻 be a minor of 𝐺. 
Then, 𝐻 admits an IASI.  
 
The proof of this result is an immediate consequence of Propo-
sition 4.1 and 4.2.  
 
Let 𝐺 be a connected graph and let 𝑢 be a vertex of 𝐺 with 
𝑑(𝑢) = 2. Then, 𝑢 is adjacent to two vertices 𝑢 and 𝑤 in 𝐺. If 𝑢 
and 𝑢 are non-adjacent vertices in 𝐺, then delete 𝑢 from 𝐺 and 
add the edge 𝑢𝑤 to 𝐺 − {𝑢}. This operation is called an elemen-
tary topological reduction on 𝐺. Then, we have 
  
Proposition 4.4.  [31] Let 𝐺 be a graph which admits an IASI. Then 
any graph 𝐺′, obtained by applying finite number of elementary 
topological reductions on 𝐺, admits an IASI.  
 
A subdivision or an expansion of a graph is the reverse opera-
tion of an elementary topological reduction. Under this opera-
tion, we introduce a new vertex, say 𝑤, to an edge 𝑢𝑢 in 𝐺. 
Thus, the vertex 𝑤 replaces the edge 𝑢𝑢 and two edges 𝑢𝑤 and 
𝑤𝑢 are introduced to 𝐺 − 𝑢𝑢 ∪ {𝑤}. Two graphs 𝐺 and 𝐺′ are 
said to be homeomorphic if there is a graph isomorphism from 
some subdivision of 𝐺 to some subdivision of 𝐺′.  
 
The following theorem establishes the existence of an induced 
IASL for a graph 𝐺′ which is homeomorphic to a given IASL 
graph 𝐺.  
 
Proposition 4.5.  Let 𝐺 be an IASL (or IASI) graph. Then, any 
subdivision 𝐺′ of 𝐺 admits an (induced) IASL (or IASI). 
  
Proof. Let 𝑓 be an IASL defined on a given graph 𝐺 and let 𝑢,𝑢 

be two adjacent vertices in 𝐺. Introduce a new vertex 𝑤 on the 
edge 𝑢𝑢 so that 𝑢𝑢 is subdivided to two edges 𝑢𝑤 and 𝑤𝑢. Let 
𝐺′ = [𝐺 − (𝑢𝑢)]∪ {𝑢𝑤, 𝑢𝑤}. Define a function 𝑔:𝑉(𝐺′) →
𝒫(ℕ0) such that 𝑔(𝑢) = 𝑓(𝑢) if 𝑢 ∈ 𝑉(𝐺) and 𝑔(𝑤) = 𝑓+(𝑢𝑢). 
Clearly, 𝑔 is an IASL on 𝐺′. This result can be extended to a 
graph obtained by finite number of subdivisions on 𝐺. There 
fore, any subdivision of an IASL graph admits an (induced) 
IASL.      
 
Invoking Proposition 5, the admissibility of an IASL by a 
graph that is homeomorphic to a given IASL graph.  
 
Proposition 4.6. Let 𝐺 be an IASL (or IASI) graph and let 𝐻 be a a 
graph that is homeomorphic to 𝐺. Then, 𝐻 admits an IASL (or 
IASI).  
 
Proof. Assume that the graphs 𝐺 and 𝐻 are homeomorphic 
graphs. Let 𝐺′ and 𝐻′ be the isomorphic subdivisions of 𝐺 and 
𝐻 respectively. Let 𝑓 be an IASL defined on 𝐺. By Proposition 
5, the subdivision 𝐺′ admits an IASL, say 𝑓′ induced by 𝑓. 
Since 𝐺′ ≅ 𝐻′, define a function 𝑔:𝑉(𝐻′) → 𝒫(ℕ0) by 𝑔(𝑢′) =
𝑓(𝑢), where 𝑢′ is the vertex in 𝐻′ corresponding to the vertex 𝑢 
of 𝐺′. That is, 𝑔 assigns the same set-labels of the vertices of 𝐺′ 
to the corresponding vertices of 𝐻′. Therefore, 𝑔(𝑉(𝐻′)) =
𝑓(𝑉(𝐺′)). Since 𝐻 can be considered as a graph obtained by 
applying a finite number of topological reductions on 𝐻′, by 
Proposition 4, 𝑔 induces an IASL on 𝐻. Therefore, 𝐻 is an IASL 
graph.    
 
The existence of integer additive set-labelings for certain other 
graphs associated to the given graph 𝐺, which are not ob-
tained by replacing some elements of 𝐺 by certain other ele-
ments not in 𝐺, have been established in [31].  
 
An important graph of this kind which is associated to a given 
graph 𝐺 is the line graph of 𝐺 which is defined as follows. 
  
For a given graph 𝐺, its line graph 𝐿(𝐺) is a graph such that 
each vertex of 𝐿(𝐺) represents an edge of 𝐺 and two vertices of 
𝐿(𝐺) are adjacent if and only if their corresponding edges in 𝐺 
incident on a common vertex in 𝐺. The following theorem es-
tablishes the existence of IASI by the line graph of a graph.  
 
Theorem 4.7.  [31] If a graph 𝐺 admits IASI, say 𝑓, then its line 
graph 𝐿(𝐺) also admits an (induced) IASI.  
 
Another graph that is associated to a given graph is its total 
graph which is defined as follows. 
  
The total graph of a graph 𝐺 is the graph, denoted by 𝑇(𝐺), is 
the graph having the property that a one-to one correspond-
ence can be defined between its points and the elements (ver-
tices and edges) of 𝐺 such that two points of 𝑇(𝐺) are adjacent 
if and only if the corresponding elements of 𝐺 are adjacent 
(either if both elements are edges or if both elements are verti-
ces) or they are incident (if one element is an edge and the 
other is a vertex).  
The following theorem establishes the existence of an IASI for 
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the total graph of a graph.  
 
Theorem 8.  [31] If a graph 𝐺 admits IASI, say 𝑓, then its total 
graph 𝑇(𝐺) also admits an (induced) IASI.  
 
So far, we discussed about the integer additive set-labeling of 
graphs with respect to the countably infinite set ℕ0. Can we 
choose a finite set 𝑋 as the ground set for labeling the vertices 
of a graph 𝐺? This is possible only when the ground set 𝑋 has 
sufficiently large cardinality. Hence, the study about the car-
dinality of the ground set 𝑋 arises much interest.  
 
The minimum cardinality of the ground set that is required for 
set-labeling a graph 𝐺 is called the set-indexing number of 𝐺. 
The following theorem determines the set-indexing number of 
a given graph 𝐺.  
 
Theorem 4.9.  [31] Let 𝑋 be a finite set of non-negative integers and 
let 𝑓:𝑉(𝐺) → 2𝑋 − {∅} be an IASI on 𝐺, which has 𝑛 vertices. Then, 
𝑋 has at least ⌈𝑙𝑙𝑔2(𝑛+ 1)⌉ elements.  
 
The following theorem is special case of the above theorem 
when the vertices of 𝐺 have the same set-indexing number.  
 
Theorem 4.10.  [31] Let 𝑋 be a finite set of non-negative integers 
and let 𝑓:𝑉(𝐺) → 2𝑋 − {∅} be an IASI on 𝐺, which has 𝑛 vertices, 
such that 𝑉(𝐺) is 𝑙-uniformly set-indexed. Then, 𝑛 = 𝐶(|𝑋|, 𝑙). 
 
We have discussed the cardinality of the ground set 𝑋 for la-
beling the vertices of a given graph so that it admits an IASL. 
The cardinality of the set-labels of the elements of 𝐺 is also 
worth studying. Some studies in this area are reviewed in the 
following section.  
 
5. Cardinality of the Set-Labels of IASL Graphs 
 
Certain studies on set-indexing numbers of the elements of the 
IASI-graphs have been done in [18], [32] and [31]. The set-
theoretic foundations of the IASLs , established in these stud-
ies, are reviewed in this section.  
 
Let 𝐴 and 𝐵 be two non-empty sets of non-negative integers. 
Then the ordered pairs (𝑎, 𝑏) and (𝑐,𝑑) in 𝐴 × 𝐵 are said to be 
compatible if 𝑎 + 𝑏 = 𝑐 + 𝑑. If (𝑎,𝑏) and (𝑐,𝑑) are compatible, 
then we write (𝑎, 𝑏) ∼ (𝑐,𝑑). Clearly, ∼ is an equivalence rela-
tion.  
 
A compatible class with respect to an integer 𝑘 is the subset of 
𝐴 × 𝐵 defined by {(𝑎,𝑏) ∈ 𝐴 × 𝐵:𝑎 + 𝑏 = 𝑘} and is denoted by 
𝖢𝑘.  
 
All the compatibility classes need not have the same number 
of elements but can not exceed a certain number. It can be not-
ed that exactly one representative element of each compatibil-
ity class 𝖢𝑘 of 𝑓(𝑢) × 𝑓(𝑢) contributes an element to the set-
label of the corresponding edge 𝑢𝑢 and all other 𝑟𝑘 − 1 ele-
ments are neglected and we call these elements as neglected 
elements of the class 𝖢𝑘. The number of neglected elements in 

the set-label of an edge 𝑢𝑢 with respect to the set 𝑓(𝑢) × 𝑓(𝑢) 
is called the neglecting number of that edge.  
 
The compatibility classes which contain the maximum possi-
ble number of elements are called saturated classes. The com-
patibility class that contains maximum elements is called a 
maximal compatibility class. Hence, we have  
 
Proposition 5.1.  [31] The cardinality of a saturated class in 𝐴 × 𝐵 
is 𝑛, where 𝑛 = 𝑚𝑖𝑛 ( |𝐴|, |𝐵|).  
 
The number of distinct compatibility classes in 𝐴 × 𝐵 is called 
the compatibility index of the pair of sets (𝐴,𝐵) and is denoted 
by ℧(𝐴,𝐵). Hence, we have the following lemma.  
 
Lemma 5.2.  Let 𝑓 be an IASI of a graph 𝐺 and 𝑢, 𝑢 be two vertices 
of 𝐺. The set-indexing number of an edge 𝑒 = 𝑢𝑢 of 𝐺 is given by 
|𝑓+(𝑒)| = |𝑓(𝑢)| + |𝑓(𝑢)| = ℧(𝑓(𝑢),𝑓(𝑣)) . 
 
The following result establishes the bounds for the set-
indexing number of the edges of an IASI graph, in terms of the 
set-indexing numbers of their end vertices. 
  
Lemma 5.3. [18] For an IASI 𝑓 of a graph 𝐺, 
𝑚𝑎𝑚 ( |𝑓(𝑢)|, |𝑓(𝑢)|) ≤ |𝑓+(𝑢𝑢)| = |𝑓(𝑢) + 𝑓(𝑢)| ≤
|𝑓(𝑢)||𝑓(𝑢)|, where 𝑢, 𝑢 ∈ 𝑉(𝐺).  
 
Theorem 5.4.  Let 𝑓 be an IASI of a graph 𝐺 and let 𝑢 and 𝑢 be two 
adjacent vertices of 𝐺. Let |𝑓(𝑢)| = 𝑚 and |𝑓(𝑢)| = 𝑛. Then, 
|𝑓+(𝑢𝑢)| = 𝑚𝑛 − 𝑟, where 𝑟 is the number of neglected elements in 
𝑓(𝑢) × 𝑓(𝑢).  
 
An interesting question that arises in this context is about a 
necessary and sufficient condition for an IASL of a given 
graph 𝐺 to be a uniform IASL of 𝐺. The following result pro-
vides a platform for finding the conditions for a given graph 𝐺 
to admit a uniform IASL.  
 
Proposition 5.5. Two adjacent edges 𝑒𝑖 and 𝑒𝑗 of a graph 𝐺 have the 
same set-indexing number if and only if the set-indexing number of 
the common vertex of these edges is the quotient when the difference 
of the neglecting numbers of the edges is divided by the differences of 
set-indexing numbers of the end vertices that are not common to 
these edges.  
 
Proof. Let 𝑒𝑖 = 𝑢𝑢𝑖 and 𝑒𝑗 = 𝑢𝑢𝑗 be two adjacent edges in the 
given graph 𝐺. Let 𝑓 be an IASL defined on 𝐺. Also, let 
|𝑓(𝑢)| = 𝑚, |𝑓(𝑢𝑖)| = 𝑛𝑖 and |𝑓(𝑢𝑗)| = 𝑛𝑗. Then, the set-
indexing number of 𝑒𝑖 is 𝑚𝑛𝑖 − 𝑟𝑖 and that of 𝑒𝑗 is 𝑚𝑛𝑗 − 𝑟𝑗 
where 𝑟𝑖 and 𝑟𝑗 are neglecting numbers of 𝑒𝑖 and 𝑒𝑗 respective-
ly.  
 
Assume that 𝑒𝑖 and 𝑒𝑗 have the same set-indexing number. 
Then, 𝑚𝑛𝑖 − 𝑟𝑖 = 𝑚𝑛𝑗 − 𝑟𝑗. That is, 𝑚 = (𝑟𝑖 − 𝑟𝑗)/(𝑛𝑖 − 𝑛𝑗). 
 
Conversely, assume that the set-indexing number of the com-
mon vertex of these edges is the quotient when the difference 
of the neglecting numbers of the edges is divided by the dif-
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ferences of set-indexing numbers of the end vertices that are 
not common to these edges. That is, 𝑚 = (𝑟𝑖 − 𝑟𝑗)/(𝑛𝑖 − 𝑛𝑗). 
Hence, 𝑚𝑛𝑖 − 𝑟𝑖 = 𝑚𝑛𝑗 − 𝑟𝑗.  
 
Therefore, the edges have the same set-indexing number.       
 
Due to the above proposition, we establish a necessary and 
sufficient condition for an IASL of a given graph to be a uni-
form IASL of 𝐺.  
 
Theorem 5.6.  Let 𝐺 be a graph that admits an IASL 𝑓. Then, 𝑓 is a 
uniform IASL of 𝐺 if and only if the set-indexing number of the 
common vertex of any two adjacent edges is the ratio of the difference 
between their neglecting numbers to the difference betweenthe set-
indexing numbers of their distinct end vertices.  
 
In the following theorem, we prove a necessary and sufficient 
condition for an IASL of a graph 𝐺, which assigns uniform set-
labels to the vertices of 𝐺, to be a uniform IASL of 𝐺.  
 
Theorem 5.7. Let the graph 𝐺 admits an IASL 𝑓 under which all 
vertices of 𝐺 are uniformly set-labeled. Then, 𝑓 is a uniform IASL if 
and only if all edges of 𝐺 have the same neglecting number.  
 
Proof. Let 𝑉(𝐺) be 𝑙-uniformly set-labeled. Then, for any ver-
tex 𝑢 in 𝐺, |𝑓(𝑢)| = 𝑙 and 𝑓+(𝑒𝑖)𝑓+(𝑢𝑢) = 𝑙2 − 𝑟𝑖.  
Let 𝑓 be a uniform IASI of 𝐺. Then, for any two adjacent edges 
𝑒𝑖 = 𝑢𝑢𝑖 and 𝑒𝑗 = 𝑢𝑢𝑗 of 𝐺, we have |𝑓+(𝑒𝑖)| = |𝑓+(𝑒𝑗)|. That is, 
𝑙2 − 𝑟𝑖 = 𝑙2 − 𝑟𝑗 and hence  𝑟𝑖 = 𝑟𝑗. 
 
Conversely, assume that all the edges of 𝐺 have the same ne-
glecting number, say 𝑟. Therefore, for any edge 𝑒 = 𝑢𝑢 of 𝐺, 
|𝑓+(𝑒)| = |𝑓(𝑢)| |𝑓(𝑢)|− 𝑟. Since the graph 𝑉(𝐺) is 𝑙-uniformly 
set-labeled, |𝑓(𝑢)| = 𝑙 for all 𝑢 ∈ 𝑉(𝐺). Therefore, |𝑓+(𝑒)| =
𝑙2 − 𝑟 for all edges 𝑒 ∈ 𝐸(𝐺). That is, 𝑓 is a uniform IASL.   
 
A necessary and sufficient condition for a graph to have a 2-
uniform IASI is proved in [5] as follows.  
 
Theorem 5.8. [5] A graph 𝐺 admits a 2-uniform IASI if and only if 
𝐺 is bipartite.  
 
In view of Lemma 3 the following definitions are introduced 
in [18] and [32].  
 
Definition 5.9. [18] A weak IASI is an IASI 𝑓 whose associated 
function is defined as |𝑓+(𝑢𝑢)| = max ( |𝑓(𝑢)|, |𝑓(𝑢)|) for all 
𝑢,𝑢 ∈ 𝑉(𝐺). A graph which admits a weak IASI may be called 
a weak IASI graph. A weak IASI is said to be weakly uniform 
IASI if |𝑓+(𝑢𝑢)| = 𝑘, for all 𝑢, 𝑢 ∈ 𝑉(𝐺) and for some positive 
integer 𝑘.  
 
Definition 5.10. [32] An IASI 𝑓 is called a strong IASI if 
|𝑓+(𝑢𝑢)| = |𝑓(𝑢)||𝑓(𝑢)| for all 𝑢, 𝑢 ∈ 𝑉(𝐺). A graph which ad-
mits a strong IASI may be called a strong IASI graph. A strong 
IASI is said to be strongly uniform IASI if |𝑓+(𝑢𝑢)| = 𝑘, for all 
𝑢,𝑢 ∈ 𝑉(𝐺) and for some positive integer 𝑘.  
 

Form the above definitions it follows that if 𝑓;𝑉(𝐺) → 𝒫(ℕ0) is 
a weak (or strong) IASI defined on a graph 𝐺, then for each 
adjacent pair of vertices 𝑢 and 𝑢 of 𝐺, each compatibility class 
of the pair of set-labels 𝑓(𝑢) and 𝑓(𝑢) is a trivial class. 
  
Let 𝐺 be an IASI graph. Then, the following result for 𝐺 was 
proved in [18].  
 
Lemma 5.11.  [18] Let 𝑓:𝑉(𝐺) → 𝒫(ℕ0) be an IASI defined on a 
graph 𝐺. Let 𝑢 and 𝑢 be any two adjacent vertices in 𝐺. Then, 
|𝑓+(𝑢𝑢)| = 𝑚𝑎𝑚 ( |𝑓(𝑢)|, |𝑓(𝑢)|) if and only if either |𝑓(𝑢)| = 1 or 
|𝑓(𝑢)| = 1.  
This lemma leads us to the following result. 
  
Theorem 5.12. [31] An IASI 𝑓 of a graph 𝐺 is a weak IASI of 𝐺 if 
and only if at least one end vertex of any edge in 𝐺 has the set-
indexing number 1.  
 
The following theorem describes a necessary and sufficient 
condition for a graph to admit a weakly uniform IASI.  
 
Theorem 5.13. [31] A connected graph 𝐺 admits a weakly uniform 
IASI 𝑓 if and only if 𝐺 is a bipartite graph.  
 
The necessary and sufficient condition for the sumset of two 
sets to have maximum cardinality is established in the follow-
ing result. 
  
Lemma 5.14.  [32] Let 𝐴, 𝐵 be two non-empty subsets of ℕ0. Let 𝐷𝐴 
and 𝐷𝐵 be the sets of all differences between two elements in the sets 
𝐴 and 𝐵 respectively. Then, |𝐴 + 𝐵| = |𝐴|. |𝐵| if and only if 𝐷𝐴 and 
𝐷𝐵 are disjoint.  
 
The sets 𝐷𝐴 of all differences between two elements of set 𝐴 is 
called the difference set of 𝐴. 
  
In view of the above lemma, a necessary and sufficient condi-
tion for an IASI to be a strong IASI is established in [32] as 
follows.  
 
Theorem 5.15. [32] An IASI 𝑓 of a graph 𝐺 is a strong IASI of 𝐺 if 
and only if the difference sets of the set-labels of any two adjacent 
vertices in 𝐺 are disjoint sets.  
 
The following theorem describes a necessary and sufficient 
condition for a graph to admit a strongly uniform IASI.  
 
Theorem 5.16. [32] A connected graph 𝐺 admits a strongly 𝑘-
uniform IASI 𝑓 if and only if 𝐺 is a bipartite graph or 𝑓 is a (𝑘, 𝑙)-
completely uniform IASI of 𝐺, where 𝑘 = 𝑙2.  
 
6. Conclusion 
 
So far, we have reviewed the studies about integer additive 
set-labelings and integer additive set-indexers of certain 
graphs and their characteristics. In this paper, we also propose 
some new results in this area. Certain problems regarding the 
admissibility of integer additive set-indexers by various other 
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graph classes are still open.  
 
More properties and characteristics of different types of IASLs 
and IASIs, both uniform and non-uniform, are yet to be inves-
tigated. There are some more open problems regarding neces-
sary and sufficient conditions for various graphs and graph 
classes to admit certain IASIs. All these facts show that there is 
a wide scope for further researches in this area. 
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